Exact enumeration study of free energies of interacting polygons and walks in two dimensions

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1998 J. Phys. A: Math. Gen. 314725
(http://iopscience.iop.org/0305-4470/31/20/010)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.122
The article was downloaded on 02/06/2010 at 06:53

Please note that terms and conditions apply.

Exact enumeration study of free energies of interacting polygons and walks in two dimensions

D Bennett-Wood \dagger, I G Enting \ddagger, D S Gaunt§, A J Guttmann $\dagger \uparrow$, J L Leask \dagger, A L Owczarek \dagger and S G Whittington\|
\dagger Department of Mathematics and Statistics, The University of Melbourne, Parkville, Victoria 3052, Australia
\ddagger CSIRO, Division of Atmospheric Research, Private Bag 1, Mordialloc, Victoria 3195, Australia
§ Department of Physics, King's College, Strand, London WC2R 2LS, UK
|| Department of Chemistry, University of Toronto, Toronto M5S 3H6, Canada

Received 3 November 1997

Abstract

We present analyses of substantially extended series for both interacting selfavoiding walks (ISAW) and polygons (ISAP) on the square lattice. We argue that these provide good evidence that the free energies of both linear and ring polymers are equal above the θ-temperature, thus extending the application of a theorem of Tesi et al to two dimensions. Below the θ-temperature the conditions of this theorem break down, in contradistinction to three dimensions, but an analysis of the ratio of the partition functions for ISAP and ISAW indicates that the free energies are in fact equal at all temperatures within 1% at least. Any perceived difference can be interpreted as the difference in the size of corrections to scaling in both problems. This may be used to explain the vastly different values of the crossover exponent previously estimated for ISAP to that predicted theoretically, and numerically confirmed, for ISAW. An analysis of newly extended neighbour-avoiding self-avoiding walk series is also given.

1. Introduction

Long linear polymers in dilute solution are expanded objects under good solvent conditions but if the solvent quality is decreased or, equivalently, the temperature lowered below the θ-temperature, the polymers appear to undergo a sudden collapse transition from an expanded coil to a compact globule. This phenomenon has been studied experimentally by light scattering [2,3] and by viscosity measurements [4]. In addition, it has been modelled [5] by interacting self-avoiding walks (ISAW) on a lattice with an interaction energy proportional to the number of nearest-neighbour contacts. Considerable progress in the study of this model occurred following the work of de Gennes [6], especially in two dimensions where many critical properties have been determined using Coulomb gas [7] and conformal invariance [8] methods. The model has also been studied numerically using a wide variety of techniques including transfer matrices [9, 10], exact enumeration [11-16], $1 / d$-expansions [18, 19] and Monte Carlo [19-28]. As a result, for ISAW in $d=2$ at the θ-point, the critical exponents are believed to take on the values predicted by Duplantier and Saleur [30], in particular the crossover exponent $\phi=\frac{3}{7}=0.428 \ldots$ In addition, the value

[^0]of the temperature parameter β at the collapse transition has been estimated numerically (see [28]) and has a value around $\beta_{c}=0.66$ for the square lattice.

A similar collapse transition is believed to occur in randomly branched polymers modelled by lattice animals or lattice trees [31, 32]. For lattice animals, the crossover exponent and certainly the location of the transition seem to depend on the details of the model. For example, for the k-model, a contact model which is a natural generalization of the ISAW model, $\phi=0.60 \pm 0.03, \beta_{c}=0.38 \pm 0.05$ on the square lattice [33], while for the C-model, a cycle model, one finds [34] on the same lattice $\phi=0.657 \pm 0.025$, $\beta_{c}=1.87 \pm 0.02$. Both pairs of values are quite different from the corresponding pair for ISAW quoted above.

On the other hand, there is a growing belief [35, 36, 1, 37] that all models with a given architecture (e.g. polygons, uniform f-stars, combs, brushes, ...) not only have the same collapse temperature and crossover exponent as ISAW but their limiting reduced free energies have the same dependence on the value of the temperature parameter β as do ISAW. Let us review the evidence.

First, we define the partition functions for ISAW, interacting self-avoiding polygons (ISAP) and uniform f-stars (ISAS- f) by

$$
\begin{align*}
Z_{n}(\beta) & =\sum_{k} c_{n}(k) \mathrm{e}^{\beta k} \tag{1.1}\\
Z_{n}^{0}(\beta) & =\sum_{k} p_{n}(k) \mathrm{e}^{\beta k} \tag{1.2}
\end{align*}
$$

and

$$
\begin{equation*}
Z_{n}(\beta ; f)=\sum_{k} s_{n}(k ; f) \mathrm{e}^{\beta k} \tag{1.3}
\end{equation*}
$$

Here, $c_{n}(k)$ and $p_{n}(k)$ are the number of self-avoiding walks (SAW) and polygons (SAP), respectively, with n edges and k contacts, and $s_{n}(k ; f)$ is the number of uniform stars with f branches, n edges in each branch and k contacts. Clearly, $s_{n}(k ; 1)=c_{n}(k)$. It has been proved rigorously $[1,37]$ that on a d-dimensional simple hypercubic lattice the corresponding limiting reduced free energies

$$
\begin{align*}
& \kappa(\beta)=\lim _{n \rightarrow \infty} \frac{1}{n} \ln Z_{n}(\beta) \tag{1.4}\\
& \kappa^{0}(\beta)=\lim _{n \rightarrow \infty} \frac{1}{n} \ln Z_{n}^{0}(\beta) \tag{1.5}
\end{align*}
$$

and

$$
\begin{equation*}
\kappa_{f}(\beta)=\lim _{n \rightarrow \infty} \frac{1}{n f} \ln Z_{n}(\beta ; f) \tag{1.6}
\end{equation*}
$$

exist, and are equal to one another for all $\beta \leqslant 0$. (More precisely, the proofs by Tesi et al [1] for walks and polygons are for $d=3$ but similar arguments should work for general d.) Yu et al [37] also reported, but without proof, that this result extends to uniform combs and brushes.

For $\beta>0$, the existence of the limiting value $\kappa^{0}(\beta)$ has been proved rigorously, as has the fact that the limiting function is monotonic and convex [14]. Otherwise, little else has been proved rigorously. However, there is mounting evidence in support of the conjecture

$$
\begin{equation*}
\kappa(\beta)=\kappa^{0}(\beta)=\kappa_{f}(\beta) \quad \forall \beta \text { and } d \tag{1.7}
\end{equation*}
$$

More specifically, Yu et al [37] have derived and analysed exact enumeration data for ISAW through orders $n=25,18$ and 17, for ISAP through $n=26,18$ and 16 , for ISAS-3
through $n=9,5$ and 6 , and for ISAS-4 through $n=7,5$ and 4, for the square (SQ), triangular (T) and simple cubic (SC) lattices, respectively. For ISAS-5, the data extend through $n=4$ (T, SC) and for ISAS-6 through $n=4(\mathrm{~T})$ and 3 (SC). (For f-stars, the maximum values of n may seem quite small, but it should be remembered that it is the total number of edges, obtained by multiplying the above values by f, that is comparable with the n values for walks and polygons.) The numerical plots of Yu et al (see figures 24 of [37]) suggest that all these limiting free energies are identical at least up to $\beta=2$ $(d=2)$ and $\beta=1.3(d=3)$, both corresponding to temperatures well into the collapsed regions.

Support for $\kappa(\beta)=\kappa_{f}(\beta)$ for all values of β and d comes from their $1 / d$-expansions, which Yu et al [37] derived through order $1 / d$ for general f, and through order $1 / d^{2}$ for $f=3$. The terms in the expansions are β-dependent but turn out to be independent of f and agree term-by-term with the $1 / d$-expansion for ISAW, which is known through order $1 / d^{5}$ [19]. However, it has been speculated [36], in the context of the collapse transition for lattice animals, that the range of validity of $1 / d$-expansions is limited by the collapse transition at $\beta_{c}(d)$. If the same happens for ISAW and ISAS- f, then the above argument concerning the term-by-term equality of their $1 / d$-expansions would have nothing to say when $\beta>\beta_{c}$.

Support for $\kappa(\beta)=\kappa^{0}(\beta)$ in $d=3$ comes from the Monte Carlo results presented by Tesi et al [1]. They show (see figure 4 of [1]) that, for the SC lattice, the difference in the relative free energies of ISAW and ISAP, at least up to $\beta=0.5$ (still well into the collapsed region-see (1.9) below), decreases as n increases (at least up to $n=1200$), consistent with the limiting free energies being equal for all values of β. Further confirmation is obtained by using theorem 2.8 of [1], which we shall refer to as the contact theorem. This proves that if the mean number, $\langle k\rangle_{n}^{0}$, of contacts for ISAP is at least as large as the mean number, $\langle k\rangle_{n}$, for ISAW, at all $\beta>0$, for n sufficiently large, then the limiting free energies are equal. Tesi et al studied the behaviour of $\langle k\rangle_{n}^{0} /\langle k\rangle_{n}$ as a function of β for several values of $n \leqslant 1200$ and their Monte Carlo results (see figures 5 and 6 of [1]) clearly support the equality of the limiting free energies in three dimensions, well into the collapsed region.

We have reviewed the evidence in support of the conjecture (1.7). Assuming now that the conjecture is true implies that the location β_{c} of the collapse transition and the value of the crossover exponent ϕ (using the relation, $\phi=2-\alpha$, between ϕ and the exponent α characterizing the singularity in the free energy at β_{c}), are the same for interacting walks, polygons and f-stars, as well as, possibly, for other polymer architectures modelled by uniform embeddings of graphs of fixed homeomorphism type. Indeed, there are some direct numerical estimates which are consistent with ISAW and ISAP collapsing at the same value of β. Thus, in $d=2$, recent results for ISAW [21-23, 25, 15, 16, 26, 27] and for ISAP $[13,14]$ are consistent with a common value around

$$
\begin{equation*}
\beta_{c}=0.663 \pm 0.016 \tag{1.8}
\end{equation*}
$$

while in $d=3$ a common value around

$$
\begin{equation*}
\beta_{c}=0.277 \pm 0.009 \tag{1.9}
\end{equation*}
$$

is indicated [1, 38].
As for the crossover exponent ϕ, there is the conjecture that $\phi=\frac{3}{7}$ in $d=2$ [30], while in $d=3$-the upper-critical dimension for tricritical walks- ϕ is believed to take on its mean-field value $\phi=\frac{1}{2}$ with a leading correction term which is logarithmic [39, 40], for both ISAW and ISAP. As emphasised by Brak et al [41], crossover exponents are notoriously
difficult to determine numerically. Thus, over the past few years, there has been considerable controversy [9, 11, 21-23, 25] concerning the value of ϕ for ISAW in $d=2$, with direct numerical estimates ranging from $\phi=0.48 \pm 0.07$ [9] to $\phi=0.66 \pm 0.02$ [23]. However, in more recent Monte Carlo work, first on the Manhattan lattice, Prellberg and Owczarek [42] found an estimate of $\phi=0.430 \pm 0.006$ utilizing walks of length, n, up to 10^{6} and then, with good statistics for $n \leqslant 2048$, Grassberger and Hegger [27] gave $\phi=0.435 \pm 0.006$ for the square lattice, both of which seem to confirm the theoretical value of $\phi=\frac{3}{7}$. Grassberger and Hegger argue that the neglect of extremely large correction-to-scaling terms may have been the cause of the earlier difficulties.

In the case of ISAP in $d=2$, the best numerical estimate seems to be $\phi=0.90 \pm 0.02$ [13] which is a long way from $\phi=\frac{3}{7}$, but is based upon exact enumerations only up to $n=28$ (i.e. 13 terms).

When $d=3$, most workers $[1,38]$ have simply accepted the expected theoretical value of $\phi=\frac{1}{2}$ and we know of no recent direct estimates for either ISAW or ISAP.

In this paper, our aim is to provide additional support for one part of the conjecture (1.7), namely, $\kappa(\beta)=\kappa^{0}(\beta)$ for $\beta>0$ and $d=2$. We do this by first deriving new exact enumeration data for ISAW and ISAP on the square lattice through orders $n=29$ and $n=42$, respectively. These new data extend the published data for walks and polygons [43, 13] by nine and seven terms and the unpublished data used by Yu et al [37] by four and eight terms, respectively.

The new data are used, most importantly, for comparing $\langle k\rangle_{n}$ with $\langle k\rangle_{n}^{0}$ for a range of temperatures to determine whether the conditions of the contact theorem [1] are satisfied. This evidence, and that mentioned below, strongly suggests that the free energies of ISAW and ISAP are equal above the θ-temperature ($\beta \leqslant \beta_{c}$). Intriguingly however, it seems that the conditions of the contact theorem are not satisfied at any temperature below the θ-temperature, using any reasonable extrapolation technique. This coincides with the region where we suggested that the $1 / d$-expansions may break down and so are unable to provide an argument for the equality of the ISAW and ISAS- f free energies (the other part of conjecture (1.7)). However, we have directly estimated the difference in the limiting free energies of ISAP and ISAW,

$$
\begin{equation*}
\Delta \kappa \equiv \kappa^{0}(\beta)-\kappa(\beta) \tag{1.10}
\end{equation*}
$$

as a function of β, and found that for a wide range deep into the collapsed phase this difference is 0.00 ± 0.01 (where κ and κ^{0} are of the order 1.0). At most high temperatures the error is considerably smaller (about 0.001). We have supplemented the exact enumeration data by simulating ISAP using a Monte Carlo algorithm which we argue only provides reliable information for n well below 1000 at the temperatures required, at, and below, the collapse temperature. The analysis of the data illustrates the near impossibility of extracting reliable direct estimates of the critical parameters from data of this order of n. Hence we propose that radically new algorithms are needed to simulate ISAP near, and especially below, the θ-temperature in $d=2$. Umbrella sampling and multiple Markov chain methods ([29] and references therein) have proved to be successful in $d=3$ and these are promising techniques for future work in $d=2$.

The paper is organized as follows. In section 2 we describe the exact enumeration and Monte Carlo techniques utilized. In section 3 we present our analyses and discuss their meaning, concluding with a short summary of our results in section 4.

2. Data derivation

This section describes the methods that we have used to extend the exact enumeration data for ISAP and ISAW on the square lattice, and the details of the Monte Carlo algorithm used to simulate ISAP.

2.1. Finite-lattice method

Exact enumeration results, giving the complete polynomials in $w=\mathrm{e}^{\beta}$, were obtained for all square lattice polygons with perimeter up to $n=28$ by Maes and Vanderzande [13]. We have used the finite-lattice method to extend these data by seven terms up to $n=42$. (Only terms with perimeters of even length contribute, of course.) We take the opportunity to correct a small error in table I of [13]; the number $C(26,9)$ should be 679848 , rather than 679484 as printed.

The finite-lattice method of enumerating SAPs on the square lattice was first introduced by Enting [44]-the enumeration extending to polygons with $n=38$-increasing the number of terms known at that time by over 50%. Later work extended this enumeration to $n=56[45,46]$, and currently stands at $n=70$ [47]. It has also been possible to augment these enumerations with calculations of other geometrical properties of the polygons. Thus, calliper moments up to $n=54$ were obtained by Guttmann and Enting [46] and the enumeration of polygons by both perimeter and area was given by Enting and Guttmann [48].

The technique has also been applied to other planar lattices. Series for the L and Manhattan lattices were obtained up to $n=48$ [45] and recently extended to $n=84$ [49], for the honeycomb lattice up to $n=82$ [50], and for the triangular lattice up to $n=25$ [51] classified by both perimeter and area.

The quantity that we wish to determine is $p_{n}(k)$ in (1.2), the number of square lattice unrooted polygons with n edges and k nearest-neighbour contacts. For convenience in this section, we write $p_{n, k} \equiv p_{n}(k)$, so that (1.2) becomes

$$
\begin{equation*}
Z_{n}^{0}(w)=\sum_{k} p_{n, k} w^{k} \tag{2.1}
\end{equation*}
$$

For any fixed n, the $p_{n, k}$ are all zero for $k>k_{\max }(n)$ since the sum on the right-hand side of (2.1) is a polynomial in w. Since each site of the polygon can be involved in at most two near-neighbour contacts and since each near-neighbour contact involves two sites, we must have $k_{\max }(n) \leqslant n$. In practice, we can set $k_{\max }$ empirically and use the total n-edge polygon count to ensure that we have used a sufficiently large value. Finally, we define the generating function

$$
\begin{equation*}
C(x, w)=\sum_{n} Z_{n}^{0}(w) x^{n}=\sum_{k, n} p_{n, k} w^{k} x^{n} \tag{2.2}
\end{equation*}
$$

The finite-lattice method of enumerating polygons involves two steps. First, we need to enumerate polygons constrained to lie within various finite rectangles. The second step is that such enumerations for finite rectangles are combined to give a truncated approximation of the infinite-lattice polygon generating function. If the factors used in the linear combination of the finite-lattice generating functions are chosen correctly, then the first incorrect term in the infinite-lattice generating function will correspond to the largest polygon that cannot be embedded in any of the rectangles that are used.

When enumerating polygons constrained to lie within various finite rectangles one needs to classify the polygons according to some quantity such as perimeter or area that grows
as the size of the rectangles increases. Such a quantity forms the expansion variable of the generating function. There is, however, no need to confine the classification to just one quantity; apart from the (non-trivial) overhead of working with series in two variables, the finite-lattice method applies to polygon enumerations involving several variables, as (for example) in the enumeration of polygons by perimeter and area [50, 48].

The weights $a_{\ell, m}$ used to combine the finite-lattice generating functions are used in the expression

$$
\begin{equation*}
C(x, w) \approx \sum_{\ell, m} a_{\ell, m} G_{\ell, m} \tag{2.3}
\end{equation*}
$$

where $G_{\ell, m}$ is the generating function for polygons that can be embedded in a rectangle of width ℓ and length m so as to span the length of the rectangle. The lattice symmetry gives some degree of choice in the weights. Enting and Guttmann (see equations (2.8a-e) in [45]) give the weights used in most of the polygon enumerations. However, in this calculation, we use a slightly different formulation given by Guttmann and Enting [46] when enumerating calliper moments, even though we do not retain the calliper moments in this calculation.

Let $p_{n, k ; q}$ be the number of n-edge polygons with k contacts which span a distance q in the horizontal direction, i.e. the difference between the maximum and minimum values of the horizontal coordinates is q lattice units. Then, the j th calliper moment is

$$
\begin{equation*}
C^{[j]}(x, w)=\sum_{n, k, q} q^{j} p_{n, k ; q} w^{k} x^{n} \tag{2.4}
\end{equation*}
$$

We define

$$
\begin{equation*}
S_{q}(x, w)=\sum_{n, k} p_{n, k ; q} w^{k} x^{n} \tag{2.5}
\end{equation*}
$$

whence

$$
\begin{equation*}
C^{[j]}(x, w)=\sum_{q} q^{j} S_{q}(x, w) \tag{2.6}
\end{equation*}
$$

The finite-lattice approximations for the S_{q} are

$$
\begin{equation*}
S_{q}(x, w)=\sum_{j=1}^{2 N+1-q}\left(G_{q, j}-2 G_{q-1, j}+G_{q-2, j}\right) \quad q \leqslant N \tag{2.7}
\end{equation*}
$$

and

$$
\begin{equation*}
S_{q}(x, w)=G_{2 N+1-q, q}-G_{2 N-q, q} . \tag{2.8}
\end{equation*}
$$

(This last expression also corrects a minor typographical error in equation (6) of Guttmann and Enting [46].) These expressions give the correct enumeration of polygons of up to $4 N+2$ edges (and their calliper moments).

The enumeration of the generating functions, $G_{\ell, m}$, for polygons in rectangles uses a transfer-matrix technique. The basic technique is as described by Enting [44] with the formalism extended to take account of nearest-neighbour contacts. The transfer-matrix technique works with the generating functions for sets of loops in partly constructed lattices (shown by full points in figure 1). The boundary of the partly constructed lattice is defined by a transect line drawn on the dual lattice, as shown by the broken line in figure 1 . Each step of the construction involves moving the transect line (from the broken position to the dotted position) so as to add one site (shown as circled) and two new edges (shown as $+1+1$) to the partially completed lattice. The construction of self-avoiding polygons only requires a knowledge of how the bonds of the polygon intersect the transect line. As

Figure 1. The way in which a transect line (broken) is drawn through the square lattice, cutting $W+2$ edges for a rectangle of width W. The dotted line shows the new position of the transect line after the elementary step of adding one new site (circled) and two new outgoing edges $+1++$ to replace two old incoming edges (double).
described by Enting [44], it is sufficient to distinguish between edges with no bond of the polygon (denoted ' 0 '), edges with a bond of the polygon that is the uppermost arm of a loop (denoted ' 1 ') and edges with a bond that is the lower arm of a loop (denoted ' 2 '). This ' 1 ',' 2 ' notation uniquely specifies the connectivity of the loops of the partly constructed polygon. For this study, we need to add a new edge state (' 3 ') to denote edges along which a nearest-neighbour contact occurs or, more precisely, edges along which a nearestneighbour contact may occur if an occupied site is added at the end of a type ' 3 ' bond, as the lattice is constructed.

The process of adding a site (shown as a double circle in figure 1) consists of linking the two incoming edges (shown with double lines in figure 1) that occur at the kink in the transect line and assigning states to the two new edges (shown as $+1+1$ in figure 1) leaving the site. Enting [44] lists the allowed outputs for all allowed combinations of ' 0 ', ' 1 ', ' 2 ' on the input edges, where ' 0 ' corresponds to no step, ' 1 ' and ' 2 ' to the uppermost (lowermost) end of a loop, respectively. The rules for the present case are the same with the following re-interpretations. For the purposes of classifying input states, type ' 3 ' is equivalent to type ' 0 '. An output state of ' 0 ' in the tabulation of Enting [44] is replaced by ' 3 ' except for the case when a $(0,0)$ pair is transformed to a new $(0,0)$ pair. A factor of $w^{n(3)}$, where $n(3)$ is the number of incoming type ' 3 ' edges, is included except when the output is $(0,0)$. A summary of these rules is given in table 1.

The use of ' 1 ' and ' 2 ' to denote upper and lower ends of loops constrains the relative arrangements of such edges, but the ' 0 ' and ' 3 ' can be interspersed freely amongst them. (The same situation applies on the triangular lattice where we classify sites according to four states.) The number of configurations needed to enumerate polygons with nearest-neighbour contacts on a rectangle of width W is the same as the number of configurations used when enumerating triangular-lattice polygons on a strip of width $W+1$.

The maximum width that we have used is ten and so we have been able to enumerate polygons of up to 42 steps, with a complete specification of the distribution of nearestneighbour contacts. This limit is imposed by storage requirements rather than time limitations. Our results are given in appendix A.

Table 1. Rules for allowed states of outgoing edges (x, y) for all possible states of incoming edges. The new partial generating function incorporates a factor of $x^{n(1)+n(2)}$, where $n(j)$ is the number of outgoing edges of type j, and a factor of $w^{k(3)}$, where $k(3)$ is the number of incoming edges of type ' 3 ', except in the case '*' where no bonds pass through the site. In the cases marked \dagger, other edges must be relabelled as specified by Enting [44]. In the case marked \ddagger there is no new state, but the partial generating function is included in the running total for $C(x, w)$ with the appropriate $a_{\ell, m}$ factor.

Inputs	$(0,1)$	$(0,2)$	$(0,0)$	$(1,2)$	$(2,1)$	$(1,1)$
	$(3,1)$	$(3,2)$	$(0,3)$			$(2,2)$
	$(1,0)$	$(2,0)$	$(3,0)$			
	$(3,0)$	$(2,3)$	$(3,3)$			
Outputs	$(1,3)$	$(2,3)$	$(0,0)^{*}$	\ddagger	$(3,3)$	$(3,3) \dagger$
	$(3,1)$	$(3,2)$	$(1,2)$			

2.2. Direct enumeration

The direct enumeration of ISAW on the square lattice, giving the complete polynomials in w, were given by Ishinabe [43] through $n=20$ (see table 1 of [43]). Five more terms were derived, but not published, by Yu et al (1997) in their study of the free energies of ISAW, ISAP and ISAS- f. We have used a 52 processor Intel Paragon supercomputer to extend the direct enumeration of ISAW up to $n=29$. All the terms, Z_{1} through Z_{29}, are given in appendix B. The calculation took about 100 h .

Recently, a 1024 processor Intel Paragon supercomputer was used by Conway and Guttmann [52] to implement a finite-lattice method which extended the enumeration of square lattice SAW from $n=39$ to $n=51$. Unfortunately, the parallelized algorithm, which is challenging to implement efficiently, has not so far been generalized to enumerate ISAW.

As the temperature parameter β approaches $-\infty$, the walks become neighbour avoiding. In this special case we have extended the series to 32 terms. The coefficients are also given in appendix B , as they are the coefficients $c_{n}(0)$.

2.3. Monte Carlo algorithm

Monte Carlo estimates of thermodynamic properties, including the energy and heat capacity, were obtained at a series of temperatures and lengths of polygons. The algorithm was a basic Metropolis algorithm involving sampling along a realisation of a Markov chain whose unique limit distribution was the Boltzmann distribution at the required temperature. The underlying symmetric Markov chain was first defined for walks by a set of pivot moves $[53,54]$ combined with local moves to improve the 'slow mode' problem associated with near-neighbour contacts. For polygons we hence used the corresponding 'cut-and-paste' algorithm invented by Madras et al [55]. This algorithm works well, in the sense that the autocorrelation times of the various observables are short, for high temperatures, but less well at lower temperatures. However, for values of n less than 200 we were able to sample effectively at temperatures just below that corresponding to the maximum in the heat capacity, so that the polygon was just inside the collapsed regime.

3. Free energy and contact number analysis

The exact enumeration data given in appendices A and B for ISAP and ISAW respectively, were first used to calculate the expected number of contacts for each model at a range of values of β. For $\beta \leqslant 0.663$, we plotted the contact densities for ISAW and ISAP, $m_{n}(\beta)=\langle k\rangle_{n} / n$ and $m_{n}^{0}(\beta)=\langle k\rangle_{n}^{0} / n$, respectively, against $1 / n$ on the same graph, while for $\beta>0.663$ we plotted these against $1 / \sqrt{n}-$ six of these plots are given in figure 2 . We have used these scales since these corrections are expected from the partition function scaling forms most likely in each regime [56].

For small $\beta<0.6$ the polygon data, m_{n}^{0}, are larger than the walk data, m_{n}, at the largest values of n : there is a crossing point at low n which moves to larger n as β increases. Using linear and quadratic fits, and adding in $n^{-3 / 2}$ corrections allowed us to estimate the thermodynamic limit for $m_{n}(\beta)$ and $m_{n}^{0}(\beta)$ which we denote $m(\beta)$ and $m^{0}(\beta)$ respectively. If the thermodynamic limit free energies are the same so should these limiting contact densities, and for $\beta<0.663$ this is true within 0.5%. It is also true, that if anything, the extrapolations would infer that $m^{0} \geqslant m$, but the contact theorem then implies that the free energies and hence these average contact densities are equal. Near and above the estimated θ-temperature our extrapolations lead us to believe that $m_{n}^{0}(\beta) \geqslant m_{n}(\beta)$ for n large enough (that is, there is at least a crossover point beyond the extent of the series), which would again allow the use of the contact theorem. Hence we deduce that $m(\beta)=m^{0}(\beta)$ for all $\beta<0.663$

For temperatures below the critical temperature ($\beta \geqslant 0.663$), the crossing point of the walk and polygon data disappears (see figure 2). It is unclear whether there may be one at large n or whether the θ-temperature marks a point where the crossing point moves off to ∞, thereby marking the beginning of a regime where, for all $n, m_{n}>m_{n}^{0}$. The conditions of the contact theorem would no longer apply, admitting the possibility that the ISAW and ISAP free energies may be different. In addition, our extrapolations were now far more sensitive to the number of terms used, and to small variations of the extrapolation function, especially for the walk data. The values of $m(\beta)$ and $m^{0}(\beta)$ may reasonably differ by up to 5% if any fairly conservative extrapolation is taken seriously.

For finite n, the curves of the contact densities are substantially different for ISAW and ISAP, and further differentiation, giving specific heats and third cumulants (the contact density curve is the first derivative of the free energy in the variable β), produce radically different graphs. Moreover, extrapolations seem to need different extrapolation functions to obtain results consistent with the equality of the free energies at all β. It is no wonder that past use of the ISAP data has produced vastly different results to the ISAW data. We have also previously simulated SAPs with a cut-and-join algorithm (see section 2.3) essentially in an attempt to find the θ-temperature and crossover exponent for ISAP, without great success. While we were able to simulate lengths up to 1000 , long autocorrelation times restricted the use of the data to around maximum lengths of 100 to 200. The size of the corrections-to-scaling in ISAP and their clear difference in magnitude, manifested in the contact data described above, rendered that analysis less useful than we had hoped. We do point out that using the third cumulant, which is expected to diverge at β_{c} we estimated ϕ to be around 0.5 . (Although had we chosen higher derivatives, different values would have ensued.) We do not give error bars since we do not believe that convergence has been achieved. While this cannot be used to confirm the theoretical value of $\frac{3}{7}$ for ISAP, it does throw considerable doubt on the value of 0.90 ± 0.02, previously quoted [13]. We remark that to reconcile the ISAW and ISAP results near and below the θ-temperature with Monte Carlo data will require the simulation of ISAP of lengths over 1000 with good statistics:

Figure 2. The six graphs are plots of the expected number of contacts $m_{n}(\beta)$ and $m_{n}^{0}(\beta)$ for ISAW (circles with crosses) and ISAP (crosses) respectively at six different (fixed) values of β. For $\beta=0.2,0.4$, and 0.6 , which are expected to lie in the expanded phase we have plotted the two sequences m_{n} against $1 / n$, while for $\beta=0.8,1.0$, and 1.5 , which are expected to lie in the collapsed regime, we have used $1 / \sqrt{n}$. These scales were chosen to reflect the expected corrections-to-scaling in those regimes, which in turn reflect the expected asymptotic forms of the partition function scaling.
this is something the cut-and-join algorithm and current computing power seem unable to achieve. However, we were able to use our Monte Carlo data to reinforce our conclusions concerning the extrapolations of the expected density of contacts mentioned above, in each regime.

To clarify the low-temperature situation and provide additional support for the conclusions at higher temperatures, we have analysed the series formed by the ratio of the polygon partition function to the walk partition function over the same range of temperature

Table 2. A list of estimates of the reduced free energy of ISAP from a differential approximant analysis. The value for $\beta=-\infty$ is obtained from walk data.

β	κ^{0}
$-\infty$	$0.839810(7)$
-2.0	$0.8542(3)$
-1.0	$0.8816(2)$
-0.5	$0.91194(6)$
-0.25	$0.936344(3)$
0	$0.9700811(1)$
0.2	$1.007(1)$
0.4	$1.060(2)$
0.6	$1.141(5)$
0.663	$1.170(4)$
0.8	$1.254(5)$
1.0	$1.40(2)$
1.2	$1.55(3)$
1.5	$1.79(5)$

considered above. The standard method of differential approximants was used [57], with a statistical averaging procedure over a wide range of inhomogeneous approximants applied. To use even and odd n, we in fact analysed the series $Q_{n}(\beta)$, where

$$
Q_{n}= \begin{cases}\frac{\sqrt{Z_{n+1}^{0} Z_{n-1}^{0}}}{Z_{n}} & \text { for } n \text { odd } \tag{3.1}\\ \frac{Z_{n}^{0}}{Z_{n}} & \text { for } n \text { even }\end{cases}
$$

If the expected asymptotic behaviour occurs for the partition functions (including the equality of the ISAW and ISAP free energies), the quantity $Q_{n}[16]$ should behave as a power law with connective constant 1 : the exponent of the power law will be different below, at, and above the θ-temperature. Here we are not interested in identifying this power law or the value of its exponent, only in verifying that the connective constant is indeed 1 , since it is this fact that implies the equality of the ISAW and ISAP free energies. The difference in free energy is given by

$$
\begin{equation*}
\Delta \kappa=\ln \left(\lim _{n \rightarrow \infty}\left(Q_{n}\right)^{1 / n}\right) \tag{3.2}
\end{equation*}
$$

We examined a range of β from 0 to 1.5 and the value of $\Delta \kappa$ was 0.0000 within the errors found. The errors for the following β, that is $0,0.2,0.4,0.6,0.663,0.8,1.0,1.2$, and 1.5 , were $0.0004,0.0004,0.0006,0.002,0.002,0.002,0.006,0.008$, and 0.01 , respectively. These data would seem to imply that the conjecture (1.7) holds for ISAW and ISAP at all temperatures despite the conditions of the contact theorem probably failing and the possible breakdown in the $1 / d$-expansions.

While several authors in the past have plotted $\kappa(\beta)$ for ISAW, we give above a table of values of $\kappa^{0}(\beta)$ found from a differential approximant analysis of the Z_{n}^{0} series: see table 2 . We note that the values for $\beta<1.0$ fall within graphical accuracy on the curve drawn by Nidras [28] following his analysis of Monte Carlo data for ISAW.

For $\beta=-\infty$ we have neighbouring-avoiding walks and polygons. This is an interesting problem in its own right. We have analysed the series given in appendix B by the standard

Table A1. The coefficients $p_{n}(k)$ for $n \leqslant 42$.

n	k	$p_{n}(k)$									
4	0	1	6	0	0	8	0	1	10	0	2
			6	1	2	8	1	0	10	1	8
						8	2	6	10	2	0
									10	3	18
12	0	9	14	0	36	16	0	154	18	0	668
12	1	20	14	1	96	16	1	408	18	1	1832
12	2	40	14	2	110	16	2	562	18	2	2564
12	3	0	14	3	156	16	3	488	18	3	2704
12	4	51	14	4	16	16	4	584	18	4	2218
12	5	4	14	5	138	16	5	176	18	5	2292
			14	6	36	16	6	372	18	6	1074
						16	7	188	18	7	1076
						16	8	6	18	8	740
									18	9	100
20	0	2932	22	0	13016	24	0	58364	26	0	264208
20	1	8372	22	1	38876	24	1	183044	26	1	871596
20	2	12388	22	2	60918	24	2	304010	26	2	1533190
20	3	13464	22	3	70350	24	3	370780	26	3	1971494
20	4	12983	22	4	69208	24	4	382224	26	4	2118120
20	5	10368	22	5	62212	24	5	348888	26	5	2010196
20	6	9194	22	6	47482	24	6	292470	26	6	1718270
20	7	5120	22	7	37628	24	7	214628	26	7	1360788
20	8	3679	22	8	22364	24	8	158126	26	8	969218
20	9	2532	22	9	14490	24	9	95828	26	9	679848
20	10	766	22	10	8604	24	10	59986	26	10	414052
20	11	28	22	11	3924	24	11	32256	26	11	250622
			22	12	500	24	12	16232	26	12	132908
						24	13	4280	26	13	63386
						24	14	154	26	14	24452
									26	15	3028
28	0	1206818	30	0	5558724	32	0	25803509	34	0	120638466
28	1	4189420	30	1	20297228	32	1	99008272	34	1	485808492
28	2	7791274	30	2	39822158	32	2	204447542	34	2	1053436400
28	3	10541380	30	3	56574708	32	3	304436224	34	3	1641203412
28	4	11805811	30	4	66024666	32	4	369974212	34	4	2075439970
28	5	11601068	30	5	67216160	32	5	390203512	34	5	2266884096
28	6	10285214	30	6	61558578	32	6	369111558	34	6	2214114652
28	7	8337688	30	7	51656214	32	7	319477936	34	7	1975494948
28	8	6320269	30	8	40178374	32	8	256686755	34	8	1634546818
28	9	4399656	30	9	29443298	32	9	193161096	34	9	1267837116
28	10	2975016	30	10	20083644	32	10	137613088	34	10	927667754
28	11	1808576	30	11	13178456	32	11	92079812	34	11	645059158
28	12	1057622	30	12	7968438	32	12	59007648	34	12	424295022
28	13	567540	30	13	4551574	32	13	35428684	34	13	266938184
28	14	262116	30	14	2446186	32	14	19977836	34	14	158957976
28	15	112192	30	15	1153074	32	15	10655808	34	15	89006190
28	16	27560	30	16	483900	32	16	5163928	34	16	47110136
28	17	1204	30	17	166728	32	17	2163628	34	17	23154978
			30	18	22112	32	18	818630	34	18	10030816
			30	19	308	32	19	199836	34	19	3814080
						32	20	13146	34	20	1238968
									34	21	191868
									34	22	4864

Table A2. (Continued)

n	k	$p_{n}(k)$									
36	0	567732133	38	0	2687937916	40	0	12796823923	42	0	61235363802
36	1	2396065580	38	1	11871631876	40	1	59058603772	42	1	294873317972
36	2	5444273148	38	2	28208568050	40	2	146480771246	42	2	762110650372
36	3	8859088348	38	3	47864522384	40	3	258774823792	42	3	1399688241956
36	4	11647025630	38	4	65356204120	40	4	366598059998	42	4	2055118460378
36	5	13169303200	38	5	76458854924	40	5	443457246668	42	5	2568728314030
36	6	13275125086	38	6	79511992592	40	6	475535061978	42	6	2838932155072
36	7	12202175232	38	7	75247286342	40	7	463109497364	42	7	2843720976824
36	8	10388601811	38	8	65868482586	40	8	416535589099	42	8	2626666404320
36	9	8284253876	38	9	53955153548	40	9	350206578292	42	9	2265228537960
36	10	6237262394	38	10	41706504166	40	10	277676883848	42	10	1840844618944
36	11	4454547472	38	11	30609613076	40	11	208991818212	42	11	1419474224078
36	12	3034098341	38	12	21408550092	40	12	150036552328	42	12	1043977291720
36	13	1965904908	38	13	14324532228	40	13	103039789644	42	13	735151740056
36	14	1218682494	38	14	9157864514	40	14	67883242114	42	14	496824634882
36	15	719371560	38	15	5608439482	40	15	42879298560	42	15	322875667652
36	16	401071891	38	16	3282544430	40	16	25992755022	42	16	201753866414
36	17	211258692	38	17	1824153318	40	17	15097553036	42	17	121230197502
36	18	104443870	38	18	958806512	40	18	8363957186	42	18	69955721188
36	19	46753216	38	19	475774598	40	19	4395853816	42	19	38635944222
36	20	18225676	38	20	217437824	40	20	2187904502	42	20	20323389508
36	21	6406616	38	21	88559862	40	21	1014394516	42	21	10146432880
36	22	1615006	38	22	31817912	40	22	428257958	42	22	4758325428
36	23	139760	38	23	9956348	40	23	159976584	42	23	2059822102
36	24	1072	38	24	1733664	40	24	53453638	42	24	805102310
			38	25	81020	40	25	13638392	42	25	279144480
						40	26	1582186	42	26	83753436
						40	27	34972	42	27	16591468
									42	28	1212792
									42	29	10640

method of differential approximants and find for walks

$$
\begin{align*}
& \text { unbiased } x_{c}=0.43180(2) \tag{3.3}\\
& \text { biased } x_{c}=0.4317925(1) \tag{3.4}
\end{align*}
$$

where the biased value has imposed $\gamma=\frac{43}{32}$ on the approximants, and x_{c} (from which the free energy can be calculated) is the closest singularity to the origin of the generating function of partition functions. For polygons (noting that x_{c} for polygons should be equal to the square of x_{c} for walks since only even length polygons exist) we obtain

$$
\begin{align*}
& \text { unbiased } x_{c}=0.1867(6) \quad 2-\alpha=1.5(2) \tag{3.5}\\
& \text { biased } 2-\alpha=1.43(16) \text { (first order) } \quad 1.47(11) \text { (second order) } \tag{3.6}
\end{align*}
$$

where the biased exponent estimates have been obtained using the value given in (3.4) for the critical point. The exponent estimates are consistent with the expected value of $\alpha=\frac{1}{2}$.

4. Summary

We have presented and analysed substantially extended series for both ISAW and ISAP on the square lattice. Our analysis provides good evidence that the free energies of both

Table B1. The coefficients $c_{n}(k) / 4$ for $n \leqslant 29$ and all k, and for $k=0$ with $n \leqslant 32$.

n	k	$c_{n}(k) / 4$									
1	0	1	2	0	3	3	0	7	4	0	17
						3	1	2	4	1	8
5	0	41	6	0	99	7	0	235	8	0	561
5	1	22	6	1	64	7	1	184	8	1	508
5	2	8	6	2	32	77	2	86	8	2	268
							3	38	8	3	132
									8	4	10
9	0	1331	10	0	3167	11	0	7485	12	0	17753
9	1	1344	10	1	3556	11	1	9244	12	1	23876
9	2	850	10	2	2458	11	2	6900	12	2	19250
9	3	346	10	3	1152	11	3	3888	12	3	11436
9	4	196	10	45	596	11	4	1606	12	4	5660
					96	11	5	888	12	5	2524
						11	6	62	12	6	734
13	0	41867	14	0	99043	15	0	233157	16	0	550409
13	1	60884	14	1	154792	15	1	389792	16	1	979240
13	2	52934	14	2	143140	15	2	383628	16	2	1018166
13	3	33472	14	3	96904	15	3	276892	16	3	774040
13	4	19076	14	4	56594	15	4	169214	16	4	500926
13	5	7444	14	5	27300	15	5	91128	16	5	275232
13	6	3978	14	6	11310	15	6	37466	16	6	134610
13	7	720	14	7	4244	15	7	17324	16	7	53040
			14	8	284	15	8	5410	16	8	21890
						15	9	138	16	9	3780
17	0	1293817	18	0	3048915						
17	1	2442268	18	1	6080388						
17	2	2681356	18	2	7008782						
17	3	2149774	18	3	5894524						
17	4	1459644	18	4	4168254						
17	5	841890	18	5	2537728						
17	6	444576	18	6	1362950						
17	7	189650	18	7	658576						
17	8	79632	18	8	267858						
17	9	30716	18	9	105212						
17	10	3346	18	10	30408						
			18	11	1088						
19	0	7158201	20	0	16843573	21	0	39504435			
19	1	15049866	20	1	37200956	21	1	91512966			
19	2	18207818	20	2	47034904	21	2	120863206			
19	3	16046364	20	3	43256096	21	3	115919582			
19	4	11829258	20	4	33149118	21	4	92235318			
19	5	7530130	20	5	21896316	21	5	63319470			
19	6	4240496	20	6	12912128	21	6	38842204			
19	7	2170710	20	7	6763244	21	7	21312058			
19	8	968778	20	8	3274210	21	8	10792706			
19	9	387378	20	9	1369416	21	9	4893520			
19	10	154960	20	10	518706	21	10	1986952			
19	11	34190	20	11	183172	21	11	756634			
19	12	1006	20	12	22452	21	12	239288			
						21	13	23168			
22	0	92838503	23	0	217549387	24	0	510702499			
22	1	224889896	23	1	550409212	24	1	1346063500			
22	2	309216494	23	2	787511174	24	2	1998666370			
22	3	308316464	23	3	815771144	24	3	2145565908			

Table B1. (Continued)
$\left.\begin{array}{rrrrrrrrrrr}\hline n & k & c_{n}(k) / 4 & n & k & c_{n}(k) / 4 & n & k & c_{n}(k) / 4 & n & k\end{array} c_{n}(k) / 4\right)$
linear and ring polymers are equal above the θ-temperature; this result is consistent with an extension of a theorem of Tesi et al [1], but below the θ-temperature the conditions of this theorem break down. However, an analysis of the ratio of the partition functions for ISAP and ISAW indicate that the free energies are in fact equal at all temperatures to at least within 1%. Any perceived difference can be interpreted as the difference in the size of corrections-to-scaling in both problems. This may explain the vastly different values of the crossover exponent previously estimated for ISAP to that predicted theoretically, and numerically confirmed, for ISAW. We also present newly extended neighbour-avoiding SAW series and analyse them. We develop a Monte Carlo approach to this problem, and discuss its application to ISAPs.

Acknowledgments

The authors take pleasure in thanking R Brak for carefully reading the manuscript. Financial support from the Australian Research Council is gratefully acknowledged by AJG, JLL and ALO. Some of this work was carried out while SGW and DSG were separately visiting the Department of Mathematics and Statistics of the University of Melbourne, and they are grateful to the members of that department for their kind and generous hospitality.

Appendix A. Interacting self-avoiding polygon enumerations

Table A1 shows the coefficients $p_{n}(k)$ for the numbers of SAPs of length n with k nearestneighbour contacts up to $n=42$.

Appendix B. Interacting self-avoiding walk enumerations

Table B1 shows the coefficients $c_{n}(k)$ (actually we give $\left.c_{n}(k) / 4\right)$ the numbers of SAWs of length n with k nearest-neighbour contacts up to $n=29$. When $k=0$ neighbour-avoiding walks are realized and the numbers, $c_{n}(0)$, in table B1 gives the numbers of neighbouravoiding walks up to $n=32$.

References

[1] Tesi M C, van Rensburg E J J, Orlandini E and Whittington S G 1996 J. Phys. A: Math. Gen. 292451
[2] Sun S T, Nashio I, Swislow G and Tanaka T 1980 J. Chem. Phys. 735971
[3] Park I H, Kim J H and Chang T 1992 Macromolecules 257300
[4] Sun S F, Chou C C and Nash R A 1990 J. Chem. Phys. 937508
[5] Orr W J C 1946 Trans. Faraday Soc. 4212
[6] de Gennes P G 1972 Phys. Lett. 38A 339
[7] Nienhuis B 1982 Phys. Rev. Lett. 491062
[8] Cardy J L 1987 Phase Transitions and Critical Phenomena vol 11, ed C Domb and J L Lebowitz (New York: Academic)
[9] Derrida B and Saleur H 1985 J. Phys. A: Math. Gen. 18 L1075
[10] Saleur H 1986 J. Stat. Phys. 45419
[11] Privman V 1986 J. Phys. A: Math. Gen. 193287
[12] Ishinabe T 1987 J. Phys. A: Math. Gen. 206435
[13] Maes D and Vanderzande C 1990 Phys. Rev. A 413074
[14] Brak R, Guttmann A J and Whittington S G 1991 J. Math. Chem. 8255
[15] Foster D P, Orlandini E and Tesi M C 1992 J. Phys. A: Math. Gen. 25 L1211
[16] Bennett-Wood D, Brak R, Guttmann A J, Owczarek A L and Prellberg T 1994 J. Phys. A: Math. Gen. 27 L1
[17] Owczarek A L, Prellberg T, Bennett-Wood D and Guttmann A J 1994 J. Phys. A: Math. Gen. 27 L919
[18] Nemirovsky A M, Freed K F, Ishinabe T and Douglas J F 1992 Phys. Lett. A 162469
[19] Nemirovsky A M, Freed K F, Ishinabe T and Douglas J F 1992 J. Stat. Phys. 671083
[20] Mazur J and McCrackin F L 1968 J. Chem. Phys. 49648
[21] Webman I, Lebowitz J L and Kalos M H 1981 Macromolecules 141495
[22] Seno F and Stella A L 1988 J. Physique 49739
[23] Meirovitch H and Lim H A 1989 J. Chem. Phys. 912544
[24] Meirovitch H and Lim H A 1989 Phys. Rev. Lett. 622640
[25] Meirovitch H and Lim H A 1990 J. Chem. Phys. 925144
[26] Chang I S and Meirovitch H 1993 Phys. Rev. E 483656
[27] Grassberger P and Hegger R 1995 J. Physique 5597
[28] Nidras P P 1996 J. Phys. A: Math. Gen. 297929
[29] Tesi M C, van Rensburg E J J, Orlandini E and Whittington S G 1996 J. Stat. Phys. 82155
[30] Duplantier B and Saleur H 1987 Phys. Rev. Lett. 59539
[31] Lubensky T C and Isaacson J 1979 Phys. Rev. A 202130
[32] Gaunt D S and Flesia S 1990 Physica 168A 602
[33] Flesia S and Gaunt D S 1992 J. Phys. A: Math. Gen. 252127
[34] Derrida B and Herrmann H J 1983 J. Physique 441365
[35] Zifferer G 1993 Macromol. Chem. Theory Simul. 2653
[36] Peard P J and Gaunt D S 1995 J. Phys. A: Math. Gen. 286109
[37] Yu T C, Gaunt D S and Whittington S G 1997 J. Phys. A: Math. Gen. 304607
[38] Grassberger P and Hegger R 1995 J. Chem. Phys. 1026881
[39] Duplantier B 1986 Europhys. Lett. 1491
[40] Duplantier B 1987 J. Chem. Phys. 864233
[41] Brak R, Owczarek A L and Prellberg T 1993 J. Phys. A: Math. Gen. 264565
[42] Prellberg T and Owczarek A L 1994 J. Phys. A: Math. Gen. 271811
[43] Ishinabe T 1985 J. Phys. A: Math. Gen. 183181
[44] Enting I G 1980 J. Phys. A: Math. Gen. 133713
[45] Enting I G and Guttmann A J 1985 J. Phys. A: Math. Gen. 181007
[46] Guttmann A J and Enting I 1988 J. Phys. A: Math. Gen. 21 L165
[47] Enting I and Guttmann A J in preparation
[48] Enting I G and Guttmann A J 1990 J. Stat. Phys. 58475
[49] Bennett-Wood D, Cardy J L, Enting I G, Guttmann A J and Owczarek A L 1998 submitted
[50] Enting I G and Guttmann A J 1989 J. Phys. A: Math. Gen. 221371
[51] Enting I G and Guttmann A J 1992 J. Phys. A: Math. Gen. 252791
[52] Conway A and Guttmann A J 1996 Phys. Rev. Lett. 775284
[53] Lal M 1969 Mol. Phys. 1757
[54] Madras N and Sokal A D 1988 J. Stat. Phys 50109
[55] Madras N, Orlitsky A and Shepp L A 1990 J. Stat. Phys. 58159
[56] Owczarek A L, Prellberg T and Brak R 1993 Phys. Rev. Lett. 70951
[57] Guttmann A J 1989 Phase Transitions and Critical Phenomena vol 13, ed C Domb and J L Lebowitz (London: Academic)

[^0]: 【 E-mail address: tonyg@ms.unimelb.edu.au

